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1 Introduction

The two main concepts in asymptotic theory covered in these notes are

• Consistency
• Asymptotic Normality

Intuition

• consistency: as we get more and more data, we eventually know the truth
• asymptotic normality: as we get more and more data, averages of random
variables behave like normally distributed random variables

1.1 Motivating Example

Let 1     denote an independent and identically distributed (iid ) random sam-

ple with [] =  and var() = 2We don’t know the probability density function

(pdf) (θ) but we know the value of 
2 The goal is to estimate the mean value

 from the random sample of data. A natural estimate is the sample mean

̂ =
1



X
=1

 = ̄

Using the iid assumption, straightforward calculations show that

[̂] =  var(̂) =
2
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Since we don’t know (θ) we don’t know the pdf of ̂ All we know about the pdf

of  is that [̂] =  and var(̂) = 2


 However, as  → ∞ var(̂) = 2


→ 0 and

the pdf of ̂ collapses at  Intuitively, as →∞ ̂ converges in some sense to  In

other words, the estimator ̂ is consistent for 

Furthermore, consider the standardized random variable

 =
̂− p
var(̂)

=
̂− q

2



=
√


µ
̂− 



¶


For any value of  [] = 0 and var() = 1 but we don’t know the pdf of  since we

don’t know () Asymptotic normality says that as  gets large, the pdf of  is

well approximated by the standard normal density. We use the short-hand notation

 =
√


µ
̂− 



¶
∼ (0 1) (1)

to represent this approximation. The symbol “
∼ ” denotes “asymptotically distrib-

uted as”, and represents the asymptotic normality approximation. Dividing both

sides of (1) by
√
 and adding  the asymptotic approximation may be re-written

as

̂ = +
√


∼ 

µ


2



¶
 (2)

The above is interpreted as follows: the pdf of the estimate ̂ is asymptotically

distributed as a normal random variable with mean  and variance 2


 The quantity

2


is often referred to as the asymptotic variance of ̂ and is denoted avar(̂) The

square root of avar(̂) is called the asymptotic standard error of ̂ and is denoted

ASE(̂) With this notation, (2) may be re-expressed as

̂
∼  ( avar(̂)) or ̂

∼ 
¡
ASE(̂)2

¢
 (3)

The quantity 2 in (2) is sometimes referred to as the asymptotic variance of
√
(̂−

)

The asymptotic normality result (2) is commonly used to construct a confidence

interval for  For example, an asymptotic 95% confidence interval for  has the form

̂± 196×
p
avar(̂) = 196×ASE(̂)

This confidence interval is asymptotically valid in that, for large enough samples, the

probability that the interval covers  is approximately 95%.

The asymptotic normality result (3) is also commonly used for hypothesis testing.

For example, consider testing the hypothesis 0 :  = 0 against the hypothesis

1 :  6= 0 A commonly used test statistic is the t-ratio

=0 =
̂− 0
ASE(̂)

=
√


µ
̂− 0



¶
 (4)
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If the null hypothesis 0 :  = 0 is true then the asymptotic normality result (1)

shows that the t-ratio (4) is asymptotically distributed as a standard normal random

variable. Hence, for  ∈ (0 1) we can reject 0 :  = 0 at the × 100% level if¯̄
=0

¯̄
 1−2

where 1−2 is the (1− 2) × 100% quantile of the standard normal distribution.

For example, if  = 005 then 1−2 = 0975 = 196

Remarks

1. A natural question is: how large does  have to be in order for the asymptotic

distribution to be accurate? Unfortunately, there is no general answer. In some

cases (e.g.,  ∼  Bernoulli), the asymptotic approximation is accurate for

 as small as 15 In other cases (e.g.,  follows a near unit root process), 

may have to be over 1000 If we know the exact finite sample distribution of

̂ then, for example, we can evaluate the accuracy of the asymptotic normal

approximation for a given  by comparing the quantiles of the exact distribution

with those from the asymptotic approximation.

2. The asymptotic normality result is based on the Central Limit Theorem. This

type of asymptotic result is called first-order because it can be derived from a

first-order Taylor series type expansion. More accurate results can be derived,

in certain circumstances, using so-called higher-order expansions or approxima-

tions. The most common higher-order expansion is the Edgeworth expansion.

Another related approximation is called the saddlepoint approximation.

3. We can use Monte Carlo simulation experiments to evaluate the asymptotic

approximations for particular cases. Monte Carlo simulation involves using

the computer to generate pseudo random observations from (θ) and using

these observations to approximate the exact finite sample distribution of ̂ for

a given sample size  The error in the Monte Carlo approximation depends on

the number of simulations and can be made very small by using a very large

number of simulations.

4. We can often use bootstrap techniques to provide numerical estimates for avar(̂)

and asymptotic confidence intervals. These are alternatives to the analytic

formulas derived from asymptotic theory. An advantage of the bootstrap is

that under certain conditions, it can provide more accurate approximations

than the asymptotic normal approximations. Bootstrapping, in contrast to

Monte Carlo simulation, does not require specifying the distribution of  In

particular, nonparametric bootstrapping relies on resampling from the observed

data. Parametric bootstrapping relies on using the computer to generate pseudo

random observations from ( θ̂) where θ̂ is the sample estimate of θ
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5. If we don’t know 2 we have to estimate avar(̂) If ̂2 is a consistent estimate

for 2 then we can compute a consistent estimate for the asymptotic variance of√
(̂−) by plugging in ̂2 for 2 in (2) and compute an estimate for avar(̂)

davar(̂) = ̂2




This gives rise to the asymptotic approximation

̂
∼  ( davar(̂)) or ̂ ∼ 

³
 dASE(̂)2´  (5)

which is typically less accurate than the approximation (2) because of the esti-

mate error in davar(̂)
2 Probability Theory Tools

The main statistical tool for establishing consistency of estimators is the Law of Large

Numbers (LLN). The main tool for establishing asymptotic normality is the Central

Limit Theorem (CLT). There are several versions of the LLN and CLT, that are based

on various assumptions. In most textbooks, the simplest versions of these theorems

are given to build intuition. However, these simple versions often do not technically

cover the cases of interest. An excellent compilation of LLN and CLT results that are

applicable for proving general results in econometrics is provided in White (1984).

2.1 Laws of Large Numbers

Let 1     be a iid random variables with pdf (θ) For a given function 

define the sequence of random variables based on the sample

1 = (1)

2 = (1 2)

...

 = (1    )

For example, let  ∼ ( 2) so that θ = ( 2) and define  = ̄ =
1


P

=1

This notation emphasizes that sample statistics are functions of the sample size and

can be treated as a sequence of random variables.

Definition 1 Convergence in Probability

Let 1      be a sequence of random variables. We say that  converges in

probability to a constant, or random variable,  and write


→ 

4



or

 lim
→∞

 = 

if ∀   0,
lim
→∞

Pr(| − |  ) = 0

¥
Remarks

1. 
→  is the same as  − 

→ 0

2. For a vector process, Y = (1     )
0 Y

→ c if 
→  for  =      

Definition 2 Consistent Estimator

If ̂ is an estimator of the scalar parameter  then ̂ is consistent for  if

̂
→ 

If θ̂ is an estimator of the  × 1 vector θ then θ̂ is consistent for θ if ̂ →  for

 = 1      ¥

All consistency proofs are based on a particular LLN. A LLN is a result that

states the conditions under which a sample average of random variables converges to

a population expectation. There are many LLN results. The most straightforward is

the LLN due to Chebychev.

2.1.1 Chebychev’s LLN

Theorem 3 Chebychev’s LLN

Let 1      be iid random variables with [] =  ∞ and var() = 2 

∞ Then

̄ =
1



X
=1


→ [] = 

¥

The proof is based on the famous Chebychev’s inequality.

Lemma 4 Chebychev’s Inequality
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Let  by any random variable with [] =  ∞ and var() = 2 ∞ Then

for every   0

Pr(| − | ≥ ) ≤ var()
2

=
2

2

¥

The probability bound defined by Chebychev’s Inequality is general but may not

be particularly tight. For example, suppose  ∼ (0 1) and let  = 1 Then Cheby-

chev’s Inequality states that

Pr(|| ≥ 1) = Pr(  1) + Pr(  −1) ≤ 1

which is not very informative. Here, the exact probability is

Pr(  1) + Pr(  −1) = 2× Pr(  −1) = 03173

To prove Chebychev’s LLN we apply Chebychev’s inequality to the random vari-

able ̄ = 1


P

=1 giving

Pr(|̄ − | ≥ ) ≤ var(̄)
2

=
2

2


It trivially follows that

lim
→∞

Pr(|̄ − | ≥ ) ≤ lim
→∞

2

2
= 0

and so ̄
→ 

Remarks

1. The proof of Chebychev’s LLN relies on the concept of convergence in mean

square. That is,

MSE(̄ ) = [(̄ − )2] =
2


→ 0 as →∞

In general, if MSE(̄ ) → 0 then ̄
→  In words, convergence in mean

square implies convergence in probability.

2. Convergence in probability, however, does not imply convergence in mean square.

That is, it may be the case that ̄
→  but MSE(̄ )9 0 This would occur,

for example, if var() does not exist.
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2.1.2 Kolmogorov’s LLN

The LLN with the weakest set of conditions on the random sample 1     is due

to Kolmogorov.

Theorem 5 Kolmogorov’s LLN (aka Khinchine’s LLN)

Let 1      be iid random variables with [||] ∞ and [] =  Then

̄ =
1



X
=1


→ [] = 

¥
Remarks

1. If  is a continuous random variable with density (θ) then

[||] =
Z
||( ) ∞

This condition controls the tail behavior of ( ) The tails cannot be too

fat such that [||] =∞ However, the tails may be sufficiently fat such that

[||] ∞ but [2
 ] =∞

2. Kolmogorov’s LLN does not require var() to exist. Only the mean needs to

exist. That is, this LLN covers random variables with fat-tailed distributions

(e.g., Student’s  with 2 degrees of freedom).

2.1.3 Markov’s LLN

Chebychev’s LLN and Kolmogorov’s LLN assume independent and identically distrib-

uted (iid) observations. In some situations (e.g. random sampling with cross-sectional

data), the independence assumption may hold but the identical distribution assump-

tion does not. For example, the  0
 may have different means and/or variances for

each  If we retain the independence assumption but relax the identical distribution

assumption, then we can still get convergence of the sample mean. In fact, we can

go further and even relax the independence assumption and only require that the

observations be uncorrelated and still get convergence of the sample mean. However,

further assumptions are required on the sequence of random variables 1     

For example, a LLN for independent but not identically distributed random variables

that is particularly useful is due to Markov.

Theorem 6 Markov’s LLN
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Let 1      be a sample of uncorrelated random variables with finite means

[] =   ∞ and uniformly bounded variances var() = 2 ≤   ∞ for

 = 1      Then

̄ − ̄ =
1



X
=1

 − 1


X
=1

 =
1



X
=1

( − )
→ 0

Equivalently,

̄ =
1



X
=1


→ lim

→∞
1



X
=1



¥
Remarks:

1. Markov’s LLN does not require the observations to be independent or identically

distributed - just uncorrelated with bounded means and variances.

2. The proof of Markov’s LLN follows directly from Chebychev’s inequality.

3. Sometimes the uniformly bounded variance assumption, var() = 2 ≤  

∞ for  = 1      is stated as

sup


2 ∞

where sup denotes the supremum or least upper bound.

4. Notice that when the iid assumption is relaxed, stronger restrictions need to be

placed on the variances of each of the random variables. That is, we cannot get

a LLN like Kolmogorov’s LLN that does not require a finite variance. This is

a general principle with LLNs. If some assumptions are weakened then other

assumptions must be strengthened. Think of this as an instance of the “no free

lunch” principle applied to probability theory.

2.1.4 LLNs for Serially Correlated Random Variables

In time series settings, random variables are typically serially correlated (i.e., corre-

lated over time). If we go further and relax the uncorrelated assumption, then we can

still get a LLN result. However, we must control the dependence among the random

variables. In particular, if  =cov() exists for all   and are close to zero for

|− | large; e.g., if
 ≤ · |−| 0    1 and  ∞

then it can be shown that

Pr(|̄ − ̄|  ) ≤ 

2
→ 0

as  → ∞ Further details on LLNs for serially correlated random variables will be

discussed in the following section on time series concepts.
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Figure 1: One realization of  = ̄ for  = 1     1000

2.1.5 Examples

We can illustrate some of the LLNs using computer simulations. For example, Figure

1 shows one simulated path of  = ̄ = −1
P

=1 for  = 1     1000 based on

random sampling from a standard normal distribution (top left), a uniform distribu-

tion over [-1,1] (top right), a chi-square distribution with 1 degree of freedom (bottom

left), and a Cauchy distribution (bottom right). For the normal and uniform random

variables [] = 0; for the chi-square [] = 1; and for the Cauchy [] does

not exist. For the normal, uniform and chi-square simulations the realized value of

the sequence  appears to converge to the population expectation as  gets large.

However, the sequence from the Cauchy does not appear to converge. Figure 2 shows

100 simulated paths of  from the same distributions used for figure 1. Here we see

the variation in  across different realizations. Again, for the normal, uniform and

chi-square distribution the sequences appear to converge, whereas for the Cauchy the

sequences do not appear to converge.
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Figure 2: 100 realizations of  = ̄ for  = 1     1000

2.2 Results for the Manipulation of Probability Limits

LLN’s are useful for studying the limit behavior of averages of random variables.

However, when proving asymptotic results in econometrics we typically have to study

the behavior of simple functions of random sequences that converge in probability.

The following Theorem due to Slutsky is particularly useful.

Theorem 7 Slutsky’s Theorem 1

Let {} and {} be a sequences of random variables and let   and  be

constants.

1. If 
→  then 

→ 

2. If 
→  and 

→  then  + 
→ + 

3. If 
→  and 

→  then 


→ 

 provided  6= 0;

→ 

4. If 
→  and (·) is a continuous function then ()

→ ()
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¥

Example 8 Convergence of the sample variance and standard deviation

Let 1     be iid random variables with [1] =  and var(1) = 2 ∞

Then the sample variance, given by

̂2 =
1



X
=1

( − ̄)2

is a consistent estimator for 2; i.e. ̂2
→ 2 The most natural way to prove this

result is to write

 − ̄ =  − + − ̄ (6)

so that

1



X
=1

( − ̄)2 =
1



X
=1

( − + − ̄)2

=
1



X
=1

( − )2 + 2
1



X
=1

( − )(− ̄) +
1



X
=1

(− ̄)2

=
1



X
=1

( − )2 + 2
1


(− ̄)

X
=1

( − ) + (− ̄)2

=
1



X
=1

( − )2 − (− ̄)2

Now, by Chebychev’s LLN ̄
→  so that second term vanishes as  → ∞ using

Slutsky’s Theorem To see what happens to the first term, let  = (−)2 so that

1



X
=1

( − )2 =
1



X
=1



The random variables 1     are iid with [] = [( − )2] = 2  ∞

Therefore, by Kolmogorov’s LLN

1



X
=1


→ [] = 2

which gives the desired result.

Remarks:
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1. Notice that in order to prove the consistency of the sample variance we used

the fact that the sample mean is consistent for the population mean. If ̄ was

not consistent for  then ̂2 would not be consistent for 2

2. By using the trivial identity (6), we may write

1



X
=1

( − ̄)2 =
1



X
=1

( − )2 − (− ̄)2

1



X
=1

( − )2 + (1)

where −(− ̄)2 = (1) denotes a sequence of random variables that converge

in probability to zero. That is, if  = (1) then 
→ 0This short-hand nota-

tion often simplifies the exposition of certain derivations involving probability

limits.

3. Given that ̂2
→ 2 and the square root function is continuous, it follows from

Slutsky’s Theorem that the sample standard deviation, ̂ is consistent for 

3 Convergence in Distribution and the Central Limit

Theorem

Let 1      be a sequence of random variables. For example, let 1      be an

iid sample with [] =  and var() = 2 and define  =
√

³
̄−


´
 We say

that  converges in distribution to a random variable  and write


→

if

() = Pr( ≤ )→  () = Pr( ≤ ) as →∞
for every continuity point of the cumulative distribution function (CDF) of 

Remarks

1. In most applications,  is either a normal or chi-square distributed random

variable.

2. Convergence in distribution is usually established through Central Limit The-

orems (CLTs). The proofs of CLTs show the convergence of () to  ()

The early proofs of CLTs are based on the convergence of the moment gener-

ating function (MGF) or characteristic function (CF) of  to the MGF or CF

of 
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3. If  is large, we can use the convergence in distribution results to justify using

the distribution of  as an approximating distribution for . That is, for 

large enough we use the approximation

Pr( ∈ ) ≈ Pr( ∈ )

for any set  ⊂ R
4. Let Y = (1     )

0 be a multivariate sequence of random variables. Then

Y
→W

if and only if

λ0Y
→ λ0W

for any λ ∈ R

3.1 Central Limit Theorems

Probably the most famous CLT is due to Lindeberg and Levy.

Theorem 9 Lindeberg-Levy CLT (Greene, 2003 p. 909)

Let 1      be an iid sample with [] =  and var() = 2 ∞ Then

 =
√


µ
̄ − 



¶
→  ∼ (0 1) as →∞

That is, for all  ∈ R
Pr( ≤ )→ Φ() as →∞

where

Φ() =

Z 

−∞
()

() =
1√
2
exp

µ
−1
2
2
¶

Remark

1. The CLT suggests that we may approximate the distribution of  =
√

³
̄−


´
by a standard normal distribution. This, in turn, suggests approximating the

distribution of the sample average ̄ by a normal distribution with mean  and

variance 2




Theorem 10 Multivariate Lindeberg-Levy CLT (Greene, 2003 p. 912)
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LetX1    X be −dimensional iid random vectors with[X] = μ and var(X) =

[(X −μ)(X −μ)0] = Σ where Σ is nonsingular. Let Σ−1 = Σ−12Σ−120 Then

√
Σ−12(X̄−μ) → Z ∼ (0 I)

where(0 I) denotes a multivariate normal distribution with mean zero and identity

covariance matrix. That is,

(z) = (2)−2 exp

½
−1
2
z0z

¾


Equivalently, we may write

√
(X̄−μ) ∼ (0Σ)

X̄
∼ (μ −1Σ)

This result implies that

avar(X̄) = −1Σ

¥

Remark

1. If the  × 1 vector X ∼ (μΣ) then

(x;μΣ) = (2)−2|Σ|−12 exp
½
−1
2

¡
x−μ)0Σ−1(x− μ¢¾

The Lindeberg-Levy CLT is restricted to iid random variables, which limits its

usefulness. In particular, it is not applicable to the least squares estimator in the

linear regression model with fixed regressors. To see this, consider the simple linear

model with a single fixed regressor

 =  + 

where  is fixed and  is iid (0 
2) The least squares estimator is

̂ =

Ã
X
=1

2

!−1 X
=1



=  +

Ã
X
=1

2

!−1 X
=1



and

√
(̂ − ) =

Ã
1



X
=1

2

!−1
1√


X
=1
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The CLT needs to be applied to the random variable  =  However, even though

 is iid,  is not iid since var() = 2
2 and, thus, varies with 

The Lindeberg-Feller CLT is applicable for the linear regression model with fixed

regressors.

Theorem 11 Lindeberg-Feller CLT (Greene, 2003 p. 901)

Let 1      be independent (but not necessarily identically distributed) ran-

dom variables with [] =  and var() = 2 ∞ Define ̄ = −1
P

=1  and

̄2 = −1
P

=1 
2
  Suppose

lim
→∞

max


2
̄2

= 0

lim
→∞

̄2 = ̄2 ∞

Then √


µ
̄ − ̄
̄

¶
→  ∼ (0 1)

Equivalently, √

¡
̄ − ̄

¢ → (0 ̄2)

¥
A CLT result that is equivalent to the Lindeberg-Feller CLT but with conditions

that are easier to understand and verify is due to Liapounov.

Theorem 12 Liapounov’s CLT (Greene, 2003 p. 912)

Let 1      be independent (but not necessarily identically distributed) ran-

dom variables with [] =  and var() = 2 ∞ Suppose further that

[| − |2+] ≤ ∞

for some   0 If ̄2 = −1
P

=1 
2
 is positive and finite for all  sufficiently large,

then √


µ
̄ − ̄
̄

¶
→  ∼ (0 1)

Equivalently, √

¡
̄ − ̄

¢ → (0 ̄2)

where lim→∞ ̄2 = ̄2 ∞

Remark

1. There is a multivariate version of the Lindeberg-Feller CLT (See Greene, 2003

p. 913) that can be used to prove that the OLS estimator in the multiple

regression model with fixed regressors converges to a normal random variable.

For our purposes, we will use a different multivariate CLT that is applicable

in the time series context. Details will be given in the section of time series

concepts.
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3.2 Asymptotic Normality

Definition 13 Asymptotic normality

A consistent estimator θ̂ is asymptotically normally distributed (asymptotically

normal) if √
(θ̂ − θ) → (0Σ)

or

θ̂
∼ (θ −1Σ)

¥

3.3 Results for the Manipulation of CLTs

Theorem 14 Slutsky’s Theorem 2 (Extension of Slutsky’s Theorem to convergence

in distribution)

Let  and  be sequences of random variables such that


→

→ 

where  is a random variable and  is a constant. Then the following results hold

as →∞:

1. 
→ 

2. 
→ provided  6= 0

3.  + 
→ + 

¥
Remark

1. Suppose  and  are sequences of random variables such that


→

→ 

where  and  are (possibly correlated) random variables. Then it is not

necessarily true that

 + 
→ + 

We have to worry about the dependence between  and .

Example 15 Convergence in distribution of standardized sequence
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Suppose 1      are iid with [1] =  and var(1) = 2 In most practical

situations, we don’t know 2 and we must estimate it from the data. Let

̂2 =
1



X
=1

( − ̄)2

Earlier we showed that

̂2
→ 2 and ̂

→ 

Now consider

 =
̄ − 

̂
√

=

µ
̄ − 


√


¶³
̂

´


From Slutsky’s Theorem and the Lindeberg-Levy CLT

1

̂

→ 1






̂

→ 


= 1

̄ − 


√


→  ∼ (0 1)

so that µ
̄ − 


√


¶³
̂

´
→  · 1

Example 16 Asymptotic normality of least squares estimator with fixed regressors

Continuing with the linear regression example, the average variance of  = 
is

̄2 = −1
X
=1

var() = 2−1
X
=1

2 

If we assume that

lim
→∞

1



X
=1

2 →   0

is finite then

lim
→∞

̄2 = ̄2 = 2 ∞

Further assume that

[||2+] ∞

Then it follows from Slutsky’s Theorem 2 and the Liapounov CLT that

√
(̂ − ) =

Ã
1



X
=1

2

!−1
1√


X
=1



→ −1 ·(0 2) ∼ (0 2−1 )
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Equivalently,

̂


˜ ( 2−1−1 )

and the asymptotic variance of ̂ is

avar(̂) = 2−1−1 

Using

̂2 =
1



X
=1

( − ̂)
2 → 2

1



X
=1

2 =
1


x0x→ 

gives the consistent estimate

davar(̂) = ̂2(x0x)−1

Then, a practically useful asymptotic distribution is

̂


˜ ( ̂2(x0x)−1)

Theorem 17 Continuous Mapping Theorem (CMT)

Suppose (·) : R→ R is continuous everywhere and 
→ as →∞ Then

()
→ ( ) as →∞

¥
The CMT is typically used to derive the asymptotic distributions of test statistics;

e.g., Wald, Lagrange multiplier (LM) and likelihood ratio (LR) statistics.

Example 18 Asymptotic distribution of squared normalized mean

Suppose 1      are iid with [1] =  and var(1) = 2 By the CLT we

have that
̄ − 


√


→  ∼ (0 1)

Now set () = 2 and apply the CMT to give



µ
̄ − 


√


¶
→ () = 2 ∼ 2(1)

18



3.3.1 The Delta Method

Suppose we have an asymptotically normal estimator ̂ for the scalar parameter ;

i.e., √
(̂ − )

→ ∼ (0 2)

Often we are interested in some function of  say  = () Suppose (·) : R → R
is continuous and differentiable at  and that 0 = 


is continuous Then the delta

method result is

√
(̂ − ) =

√
((̂)− ())

→ ∗ ∼ (0 0()22)

Equivalently,

(̂)
∼ 

µ
()

0()22



¶


¥

Example 19 Asymptotic distribution of ̄−1

Let 1      be iid with [1] =  and var(1) = 2 Then by the CLT,

√
(̄ − )

→  ∼ (0 2)

Let  = () = 1 = −1 for  6= 0 Then

0() = −−2 0()2 = −4

Then by the delta method

√
(̂ − ) =

√


µ
1

̄
− 1



¶
→ (0 −42)

1

̄



˜ 

µ
1



1



2

4

¶


provided  6= 0 The above result is not practically useful since  and 2 are unknown.
A practically useful result substitutes consistent estimates for unknown quantities:

1

̄



˜ 

µ
1



̂2

̂4

¶


where ̂
→  and ̂2

→ 2 For example, we could use ̂ = ̄ and ̂2 = −1
P

=1(−
̄)2 An asymptotically valid 95% confidence interval for 1


has the form

1

̄
± 196 ·

s
̂2

̂4
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Proof. The delta method gets its name from the use of a first-order Taylor series

expansion. Consider a first-order Taylor series expansion of (̂) at ̂ = 

(̂) = () + 0(̃)(̂ − )

̃ = ̂ + (1− ) 0 ≤  ≤ 1
Multiplying both sides by

√
 and re-arranging gives

√
((̂)− ()) = 0(̃)

√
(̂ − )

Since ̃ is between ̂ and  and since ̂
→  we have that ̃

→  Further since 0 is
continuous, by Slutsky’s Theorem 0(̃)

→ 0() It follows from the convergence in

distribution results that

√
((̂)− ())

→ 0() ·(0 2) ∼ (0 0()22)

¥
Now suppose θ ∈ R and we have an asymptotically normal estimator

√
(θ̂ − θ) → (0Σ) θ̂



˜ (θ −1Σ)

Let η = g(θ) : R → R; i.e.,

η = g(θ) =

⎛⎜⎜⎜⎝
1(θ)

2(θ)
...

(θ)

⎞⎟⎟⎟⎠ 

denote the parameter of interest where η ∈ R and  ≤  Assume that g(θ) is

continuous with continuous first derivatives

g(θ)

θ0
=

⎛⎜⎜⎜⎜⎝
1()

1

1()

2
· · · 1()


2()

1

2()

2
· · · 2()


...

...
. . .

...
()

1

()

2
· · · ()



⎞⎟⎟⎟⎟⎠ 

Then

√
(η̂ − η) = √((θ̂)− (θ))

→ 

µ
0

µ
g(θ)

θ0

¶
Σ

µ
g(θ)

θ0

¶0¶


If Σ̂→ Σ then a practically useful result is

(θ̂)


˜ 

Ã
(θ)−1

Ã
g(θ̂)

θ0

!
Σ̂

µ
g(θ)

θ0

¶0!
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Example 20 Estimation of Generalized Learning Curve

Consider the generalized learning curve (see Berndt, 1992, chapter 3)

 = 1

 

(1−)
 exp()

where  denotes real unit cost at time   denotes cumulative production up to

time ,  is production in time  and  is an iid (0, 
2) error term. The parameter 

is the elasticity of unit cost with respect to cumulative production or learning curve

parameter. It is typically negative if there are learning curve effects. The parameter

is a returns to scale parameter such that:  = 1 gives constant returns to scale;   1

gives decreasing returns to scale;   1 gives increasing returns to scale. The intuition

behind the model is as follows. Learning is proxied by cumulative production. If the

learning curve effect is present, then as cumulative production (learning) increases

real unit costs should fall. If production technology exhibits constant returns to scale,

then real unit costs should not vary with the level of production. If returns to scale

are increasing, then real unit costs should decline as the level of production increases.

The generalized learning curve may be converted to a linear regression model by

taking logs:

ln = ln1 +
³



´
ln +

µ
1−



¶
ln +  (7)

= 0 + 1 ln + 2 ln + 

= x0β + 

where 0 = ln1 1 =  2 = (1 − ), and x = (1 ln ln)
0 The

parameters β = (1 2 3)
0 may be estimated by least squares. Note that the

learning curve parameters may be recovered using

 =
1

1 + 2
= 1(β)

 =
1

1 + 2
= 2(β)

Least squares applied to (7) gives the consistent estimates

β̂ = (X0X)−1X0y
→ β

̂2 = −1
X
=1

( − x0β̂)2
→ 2

and

β̂


˜ (β ̂2(X0X)−1)
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Then from Slutsky’s Theorem

̂ =
̂1

1 + ̂2

→ 1
1 + 2

= 

̂ =
1

1 + ̂2

→ 1

1 + 2
= 

provided 2 6= −1 We can use the delta method to get the asymptotic distribution
of ̂ = (̂ ̂)

0 :µ
̂

̂

¶
=

µ
1(β̂)

2(β̂)

¶


˜ 

Ã
g(β)

Ã
g(β̂)

β0

!
̂2(X0X)−1

Ã
g(β̂)

β0

!0!


where

g(β)

β0
=

Ã
1()

0

1()

1

1()

2
2()

0

2()

1

2()

2

!

=

Ã
0 1

1+2

−1
(1+2)

2

0 0 −1
(1+2)

2

!
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4 Time Series Concepts

Definition 21 Stochastic process

A stochastic process {}∞=1 is a sequence of random variables indexed by time 

¥
A realization of a stochastic process is the sequence of observed data {}∞=1 We

are interested in the conditions under which we can treat the stochastic process like

a random sample, as the sample size goes to infinity. Under such conditions, at any

point in time 0 the ensemble average

1



X
=1


()
0



will converge to the sample time average

1



X
=1



as  and  go to infinity. If this result occurs then the stochastic process is called

ergodic.

4.1 Stationary Stochastic Processes

We start with the definition of strict stationarity.

Definition 22 Strict stationarity

A stochastic process {}∞=1 is strictly stationary if, for any given finite integer 
and for any set of subscripts 1 2      the joint distribution of ( 1  2      )

depends only on 1 −  1 −       −  but not on 

¥
Remarks

1. For example, the distribution of (1 5) is the same as the distribution of

(12 16)

2. For a strictly stationary process,  has the same mean, variance (moments) for

all 

3. Any transformation (·) of a strictly stationary process, {()} is also strictly
stationary.

Example 23 iid sequence
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If {} is an iid sequence, then it is strictly stationary. Let {} be an iid sequence
and let  ∼ (0 1) independent of {} Let  =  + Then the sequence {}
is strictly stationary.

Definition 24 Covariance (Weak) stationarity

A stochastic process {}∞=1 is covariance stationary (weakly stationary) if

1. [] =  does not depend on 

2. cov(−) =  exists, is finite, and depends only on  but not on  for

 = 0 1 2   

¥
Remark:

1. A strictly stationary process is covariance stationary if the mean and variance

exist and the covariances are finite.

For a weakly stationary process {}∞=1 define the following:

 = cov( −) = j order autocovariance

0 = var() = variance

 = 0 = j order autocorrelation

Definition 25 Ergodicity

Loosely speaking, a stochastic process {}∞=1 is ergodic if any two collections of
random variables partitioned far apart in the sequence are almost independently

distributed. The formal definition of ergodicity is highly technical (see Hayashi 2000,

p. 101 and note typo from errata).

¥

Proposition 26 Hamilton (1994) page 47.

Let {} be a covariance stationary process with mean [] =  and autocovariances

 = cov( −) If
∞X
=0

|| ∞

then {} is ergodic for the mean. That is, ̄ → [] = ¥

Example 27 MA(1)
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Let

 = +  + −1 ||  1
 ∼ iid (0 2)

Then

[] = 

0 = [( − )2] = 2(1 + 2)

1 = [( − )(−1 − )] = 2

 = 0   1

Clearly,
∞X
=0

|| = 2(1 + 2) + 2|| ∞

so that {} is ergodic.
Theorem 28 Ergodic Theorem

Let {} be stationary and ergodic with [] =  Then

̄ =
1



X
=1


→ [] = 

¥
Remarks

1. The ergodic theorem says that for a stationary and ergodic sequence {} the
time average converges to the ensemble average as the sample size gets large.

That is, the ergodic theorem is a LLN.

2. The ergodic theorem is a substantial generalization of Kolmogorov’s LLN be-

cause it allows for serial dependence in the time series.

3. Any transformation (·) of a stationary and ergodic process {} is also sta-
tionary and ergodic. That is, {()} is stationary and ergodic. Therefore, if
[()] exists then the ergodic theorem gives

̄ =
1



X
=1

()
→ [()]

This is a very useful result. For example, we may use it to prove that the sample

autocovariances

 =
1



X
=+1

( − ̄ )(− − ̄ )
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converge in probability to the population autocovariances  = [(−)(−−
)] = cov( −)

Example 29 Stationary but not ergodic process (White, 1984)

Let {} be an iid sequence with [] =  var() = 2 and let  ∼ (0 1)

independent of {} Let  =  + Note that [] =   is stationary but not

ergodic. To see this, note that

cov( −) = cov( +− +) = var() = 1

so that cov( −) 9 0 as  →∞ Now consider the sample average of 

̄ =
1



X
=1

 =
1



X
=1

( +) = ̄ +

By Chebychev’s LLN ̄
→  and so

̄
→ + 6= [] = 

Because cov( −) 9 0 as  → ∞ the sample average does not converge to the

population average.

4.2 Martingales and Martingale Difference Sequences

Let {} be a sequence of random variables and let {} be a sequence of information
sets (−fields) with  ⊂  for all  and  the universal information set. For example,

 = {1 2     } = past history of 

 = {( )

=1} {} = auxiliary variables

Definition 30 Conditional Expectation

Let  be a random variable with conditional pdf (|) where  is an information
set with    Then

[|] =
Z ∞

−∞
(|)

¥

Proposition 31 Law of Iterated Expectation
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Let 1 and 2 be information sets such that 1 ⊆ 2 and let  be a random variable

such that [ |1] and [ |2] are defined. Then
[ |1] = [[ |2]|1] (smaller set wins).

If 1 = ∅ (empty set) then

[ |1] = [ ] (unconditional expectation)

[ ] = [[ |2]|∅] = [[ |2]]
¥

Definition 32 Martingale

The pair ( ) is a martingale (MG) if

1.  ⊂ +1 (increasing sequence of information sets - a filtration)

2.  ⊂  ( is adapted to ; i.e.,  is an event in )

3. [||] ∞
4. [|−1] = −1 (MG property)

¥

Example 33 Random walk

Let  = −1+ where {} is an iid sequence with mean zero and variance 2 Let
 = {1 2     1} Then

[|−1] = −1

Example 34 Heteroskedastic random walk

Let  = −1 +  = −1 +  where {} is an iid sequence with mean zero and
variance 2 and  =  Note that var() = 2 Let  = {1 2     1} Then

[|−1] = −1

If ( ) is a MG, then

[+|] =  for all  ≥ 1
To see this, let  = 2 and note that by iterated expectations

[+2|] = [[+2|+1]|]
By the MG property

[+2|+1] = +1

which leave us with

[+2|] = [+1|] = 
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Definition 35 Martingale Difference Sequence (MDS)

The pair ( ) is a martingale difference sequence (MDS) if ( ) is an adapted

sequence and

[|−1] = 0
Remarks

1. If ( ) is a MG and we define

 =  −[|−1]
we have, by virtual construction,

[|−1] = 0
so that ( ) is a MDS.

2. The sequence {} is sometime referred to as a sequence of nonlinear innova-
tions. The term arises because if  is any function of the past history of 

and thus  ⊂  we have by iterated expectations

[−1] = [[−1|−1]]
= [−1[|−1]]
= 0

so that  is orthogonal to any function of the past history of 

3. If ( ) is a MDS then

[+|] = 0

Example 36 ARCH process

Consider the first order autoregressive conditional heteroskedasticity (ARCH(1)) process

 = 

 ∼ iid (0 1)

2 =  + 2−1 0    1   0

The process was proposed by Nobel Laureate Robert Engle to describe and pre-

dict time varying volatility in macroeconomic and financial time series. If  =

{ −1     1} then ( ) is a stationary and ergodic conditionally heteroskedastic
MDS. The unconditional moments of  are:

[] = [[|−1]] = [[|−1] = 0
var() = [2 ] = [[2 

2
 |−1]] = [2[

2
 |−1]] = [2 ]
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Furthermore,

[2 ] = [ + 2−1]

=  + [2−1] =  +[2−1]

=  +[2 ] (assuming stationarity)

=⇒ [2 ] =


1− 
 0

Next, for  ≥ 1
[−] = [[−|−1]] = 0

Finally,

[4 ] = [[4 
4
 |−1]] = [4[

4
 |−1]]

= 3 · [4 ] ≥ 3 ·[2 ]2 = 3 · [2 ]2

=⇒ [4 ]

[2 ]
2
≥ 3

The inequality in the second line above comes from Jensen’s inequality.

The conditional moments of  are

[|−1] = 0

[2 |−1] = 2 

Interestingly, even though  is serially uncorrelated it is clearly not an independent

process. In fact, 2 has an AR(1) representation. To see this, add 
2
 to both sides of

the expression for 2 to give

2 + 2 =  + 2−1 + 2

=⇒ 2 =  + 2−1 + 

where  = 2 − 2 is MDS.

Theorem 37 Multivariate CLT for stationary and ergodic MDS (Billingsley, 1961)

Let (u ) be a vector MDS that is stationary and ergodic with ×  covariance

matrix [uu
0
] = Σ Let

ū =
1



X
=1

u

Then
√
 ū =

1√


X
=1

u
→ (0Σ)

¥
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4.3 Large Sample Distribution of Least Squares Estimator

As an application of the previous results, consider estimation and inference for the

linear regression model

 = x0
(1×)

β
(×1)

+   = 1      (8)

under the following assumptions:

Assumption 1 (Linear regression model with stochastic regressors)

1. {x } is jointly stationary and ergodic
2. [xx

0
] = Σ is positive definite (full rank )

3. [] = 0 for all  

4. The process {g} = {x} is a MDS with [gg0] = [xx
0

2
 ] = S nonsingular.

Note: Part 1 implies that  is stationary so that [
2
 ] = 2 is the unconditional

variance. However, Part 4 allows for general conditional heteroskedasticity; e.g.

var(|x) = (x) In this case,

[xx
0

2
 ] = [[xx

0

2
 |x]]

= [xx
0
[

2
 |x]] = [xx

0
(x)] = S

If the errors are conditionally homoskedastic then var(|) = 2 and

[xx
0

2
 ] = [xx

0
[

2
 |x]]

= 2[xx
0
] = 2Σ = S

The least squares estimator of β in (8) is

β̂ =

Ã
X
=1

xx
0


!−1 X
=1

xy (9)

= β +

Ã
X
=1

xx
0


!−1 X
=1

x

Proposition 38 Consistency and asymptotic normality of the least squares estimator

Under Assumption 1, as  →∞

1. β̂
→ β
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2.
√
 (β̂ − β) →N(0Σ−1SΣ−1 ) β̂



˜ (β −1Σ̂−1 ŜΣ̂
−1
 ) where Σ̂

→ Σand

Ŝ
→ S

Proof. For part 1, first write (9) as

β̂ − β =
Ã
1



X
=1

xx
0


!−1
1



X
=1

x

Since {} is stationary and ergodic, by the ergodic theorem

1



X
=1

xx
0


→ [xx
0
] = Σ

and by Slutsky’s theorem Ã
1



X
=1

xx
0


!−1
→ Σ−1

Similarly, since {g} = {x} is stationary and ergodic by the ergodic theorem

1



X
=1

x =
1



X
=1

g
→ [g] = [x] = 0

As a result,

β̂ − β =
Ã
1



X
=1

xx
0


!−1
1



X
=1

x
→ Σ−1 · 0 = 0

so that

β̂
→ β

For part 2, write (9) as

√
 (β̂ − β) =

Ã
1



X
=1

xx
0


!−1
1√


X
=1

x

Previously, we deduced
³
1


P

=1 xx
0


´−1 → Σ−1  Next, since {g} = {x} is a
stationary and ergodic MDS with [gg

0
] = S by the MDS CLT we have

1√


X
=1

x =
1√


X
=1

g
→ (0S)
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Therefore

√
 (β̂ − β) =

Ã
1



X
=1

xx
0


!−1
1√


X
=1

x
→ Σ−1 ·(0S)

∼ (0Σ−1SΣ
−1
 )

From the above result, we see that the asymptotic variance of  is given by

avar(β̂) = −1Σ−1SΣ
−1


Equivalently,

β̂


˜(β −1Σ̂−1 ŜΣ̂
−1
 )

where Σ̂
→ Σand Ŝ

→ S and

davar(β̂) = −1Σ̂−1 ŜΣ̂
−1


Remark

1. If the errors are conditionally homoskedastic, then (2 |) = 2, S = 2Σ

and avar(β̂) simplifies to

avar(β̂) = −12Σ−1

Using S = −1
P

=1 xx
0
 = −1X0X

→ Σ and ̂
2 =

P

=1(−x0β̂)2
→ 2

then gives davar(β̂) = ̂2(X0X)−1

Proposition 39 Consistent estimation of S = E[2xx
0
]

Assume [()
2
] exists and is finite for all   ( = 1 2     ) Then as  →∞

Ŝ = −1
X
=1

̂2xx
0


→ S

where ̂ =  − x0β̂
Sketch of Proof. Consider the simple case in which  = 1 Then it is assumed

that [4 ] ∞ Write

̂ =  − ̂ =  −  +  − ̂

=  − (̂ − )

so that

̂2 =
³
 − (̂ − )

´2
= 2 − 2(̂ − ) + 2 (̂ − )2
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Then

̂ =
1



X
=1

̂2
2
 =

1



X
=1

2
2
 − 2(̂ − )

1



X
=1

3 + (̂ − )2
1



X
=1

4

=
1



X
=1

2
2
 + (1)

→ [2
2
 ] = 

In the above, the following results are used

̂ − 
→ 0

1



X
=1

3
→ [3] ∞

1



X
=1

4
→ [4 ] ∞

The third line follows from the ergodic theorem and the assumption that [4 ] ∞

The second line follows from the ergodic theorem and the Cauchy-Schwarz inequality

(see Hayashi 2000, analytic exercise 4, p. 169)

[| · |] ≤ ¡[2][2]¢12
with  =  and  = 2 so that

[|3|] ≤
¡
[2

2
 ][

4
 ]
¢12

∞
Using

Σ̂ = −1
X
=1

xx
0
 = −1X0X

Ŝ = −1
X
=1

̂2xx
0


→ S

it follows that

β̂


˜(β  · (X0X)−1Ŝ(X0X)−1)

so that davar(β̂) =  · (X0X)−1Ŝ(X0X)−1 (10)

The estimator (10) is often referred to as the “White” or heteroskedasticity consistent

(HC) estimator. The square root of the diagonal elements of (10) are known as the

White or HC standard errors for ̂ :

cSEHC(̂) =rh · (X0X)−1Ŝ(X0X)−1
i

  = 1     

Remark:
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1. Davidson and MacKinnon (1993) highly recommend using the following degrees

of freedom corrected estimate for S

Ŝ = ( − )−1
X
=1

̂2xx
0


→ S

They show that the HC standard errors based on this estimator have better

finite sample properties than the HC standard errors based on Ŝ that doesn’t

use a degrees of freedom correction.
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